Missing-base and ethylation interference footprinting of P1 plasmid replication initiator.

نویسندگان

  • P P Papp
  • D K Chattoraj
چکیده

RepA, the replication initiator protein of plasmid P1, binds to specific 19 bp sequences on the plasmid DNA. Earlier footprinting studies with dimethylsulfate identified the guanines that contact RepA through the major groove of DNA. In this study, base elimination was used to identify the contribution of all four bases to the binding reaction. Depurination and depyrimidation of any base in the neighborhood of the contacting guanines was found to decrease RepA binding. These results are consistent with the notion that RepA contacts bases of two consecutive major grooves on the same face of DNA. We also observed that depurination but not methylation of three guanines (G3, G8 and G9) affected binding. We identified the DNA phosphate groups (3 in the top strand, one of which mapped between G8 and G9, and 4 in the bottom strand, one of which was adjacent to C3) that strongly interfered with RepA binding upon ethylation. These results indicate that certain bases (e.g. G3, G8 and G9) may not contact RepA directly but contribute to base and backbone contacts by maintaining proper structure of the binding site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence-specific interaction between the replication initiator protein of plasmid pT181 and its origin of replication.

The replication of the pT181 plasmid is dependent on the plasmid-encoded initiator protein RepC. We have previously shown that RepC protein has sequence-specific endonuclease and topoisomerase-like activities. In this paper we demonstrate that this initiator protein has sequence-specific DNA-binding properties. Based on filter binding of plasmid restriction fragments, RepC protein specifically ...

متن کامل

Multiple homeostatic mechanisms in the control of P1 plasmid replication.

Many organisms control initiation of DNA replication by limiting supply or activity of initiator proteins. In plasmids, such as P1, initiators are limited primarily by transcription and dimerization. However, the relevance of initiator limitation to plasmid copy number control has appeared doubtful, because initiator oversupply increases the copy number only marginally. Copy number control inst...

متن کامل

Replication-induced transcription of an autorepressed gene: the replication initiator gene of plasmid P1.

The replication origin of plasmid P1 contains an array of five repeats (iterons) that bind the plasmid-encoded initiator RepA. Within the array lies the repA promoter, which becomes largely repressed on RepA binding (autorepression). One might expect that extra iterons produced on plasmid replication would titrate RepA and release the repression. The promoter, however, is induced poorly by extr...

متن کامل

Phylogeny of replication initiator protein TrfA reveals a highly divergent clade of incompatibility group P1 plasmids.

Incompatibility group P1 (IncP-1) plasmid diversity was evaluated based on replication initiator protein (TrfA) phylogeny. A new and highly divergent clade was identified. Replication assays indicated that TrfA of recently discovered IncP-1 plasmids from Xylella fastidiosa and Verminephrobacter eiseniae initiated plasmid replication using cognate or heterologous origins of replication.

متن کامل

KpnI restriction endonuclease and methyltransferase exhibit contrasting mode of sequence recognition.

The molecular basis of the interaction of KpnI restriction endonuclease (REase) and the corresponding methyltransferase (MTase) at their cognate recognition sequence is investigated using a range of footprinting techniques. DNase I protection analysis with the REase reveals the protection of a 14-18 bp region encompassing the hexanucleotide recognition sequence. The MTase, in contrast, protects...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 22 2  شماره 

صفحات  -

تاریخ انتشار 1994